TUWHERA Open Research
AUT University
View Item 
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
  •   Open Research
  • Research Institutes and Centres
  • KEDRI - the Knowledge Engineering and Discovery Research Institute
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gene trajectory clustering with a hybrid genetic algorithm and expectation maximization method

Chan, Z.; Kasabov, N
Thumbnail
View/Open
01380850.pdf (481.9Kb)
Permanent link
http://hdl.handle.net/10292/610
Metadata
Show full metadata
Abstract
Clustering time course gene expression data (gene trajectories) is an important step towards solving the complex problem of gene regulatory network (GRN) modeling and discovery as it significantly reduces the dimensionality of the gene space required for analysis. This paper introduces a novel method that hybridizes Genetic Algorithm (GA) and Expectation Maximization algorithms (EM) for clustering with the mixtures of Multiple Linear Regression models (MLRs). The proposed method is applied to cluster gene expression time course data into smaller number of classes based on their trajectory similarities. Its performance and application as a generic clustering method to other complex problems are discussed.
Date
2004
Item Type
Conference Proceedings
Publisher
IEEE
Publisher's Version
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1380850&isnumber=30107
Rights Statement
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library

 

 

Browse

Open ResearchTitlesAuthorsDateKEDRI - the Knowledge Engineering and Discovery Research InstituteTitlesAuthorsDate

Alternative metrics

 

Statistics

For this itemFor all Open Research

Share

 
Follow @AUT_SC

Contact Us
  • Admin

Hosted by Tuwhera, an initiative of the Auckland University of Technology Library