The α-Hypergeometric Stochastic Volatility Model

José Da Fonseca & Claude Martini

AUCKLAND UNIVERSITY OF TECHNOLOGY & ZELIADE SYSTEMS PARIS

NZSEG, 2014
The Positivity Problem in Finance (and other fields)

Two simple ways to have positivity

\[x^2 \quad e^x \]

Positivity is important in finance for:

- Volatility.
- Interest rates.
- Stock price.

and Noise is given by the Gaussian distribution, hence in \mathbb{R}.
Positivity in Econometrics

The GARCH:

\[r_t = \sigma_t \epsilon_t \]
\[\sigma_t^2 = \alpha_0 + \alpha_1 \sigma_{t-1}^2 + \beta_1 \epsilon_{t-1}^2 \]

The EGARCH:

\[r_t = \sigma_t \epsilon_t \]
\[\ln \sigma_t^2 = \alpha_0 + \alpha_1 g(\epsilon_{t-1}) + \beta_1 \ln \sigma_{t-1}^2 \]
Positivity in Interest rates

Zero coupon bond

\[B(t, T) = \mathbb{E}_t^Q \left[e^{-\int_t^T r_u du} \right] \]

Vasicek (Ornstein-Ulhenbeck):

\[dr_t = \kappa(\theta - r_t)dt + \sigma dr_t \]

easy but Gaussian!

Dothan:

\[dr_t = \kappa r_t dt + \sigma r_t dw_t \]

positive but much more complicated.
Equity Derivatives

For the stochastic volatility models:

\[ds_t = s_t \sigma_t dw_1^t \]

and

\[d\sigma_t = a \sigma_t dt + b \sigma_t dw_2^t \]
\[d\ln \sigma_t = a(b - \ln \sigma_t) dt + \alpha dw_2^t \]
\[d\sigma_t = a(b - \sigma_t) dt + \alpha dw_2^t \]

- Hull & White (2): volatility non stationary but exponential so positive!
- Chesney & Scott (3): logarithm of volatility Ornstein-Ulhenbeck so Gaussian but volatility is exponential so positive!
- Stein & Stein (4): volatility is Ornstein-Ulhenbeck so Gaussian, volatility is negative.

but

- Hull & White not good because volatility is a geometric Brownian motion.
- Chesney & Scott, we don't know the stock density or its characteristic function. Cannot calibrate the model.
- Stein & Stein (4), we don't know the stock characteristic function (option pricing by FFT) but volatility is Gaussian!
Equity Derivatives

\[ds_t = s_t \sqrt{\sigma_t} d\omega^1_t \]

and

\[d\sigma_t = a(b - \sigma_t) dt + \alpha \sqrt{\sigma_t} d\omega^2_t \] (5)

- The volatility is positive and we know the characteristic function of the stock.
- The Feller condition \(2ab > \alpha^2\) ensures that \(\sigma_t > 0\).

Option contains integrated volatility

\[E_t^Q \left[\left(s_t e^{\frac{1}{2} \int_t^T \sigma_u du} + \int_t^T \sigma_u d\omega^1_u - K \right)_+ \right] \]

Whether the volatility oscillates a lot (large \(\alpha \)) or not (small \(\alpha \)) option convey little (no) information on that aspect.
Equity Derivatives

The Feller condition is not satisfied in practice:

1. The volatility can touch 0.
2. The volatility distribution is too close to 0.

In fact the square root process is positivity using the x^2 function.

Positivity using e^x doesn’t work but the exponentiation is appealing.
The Hypergeometric Stochastic Volatility Model

The forward price dynamic:

\[df_t = f_t e^{vt} dw_{1,t} \] \hspace{1cm} (6)

\[dv_t = (a - be^{\alpha vt}) dt + \sigma dw_{2,t} \] \hspace{1cm} (7)

with \(dw_{1,t} dw_{2,t} = \rho dt \) (controls the leverage).

- Volatility \(v_t \) looks like an OU process.
- Stock volatility \(e^{vt} \) is positive by construction.

For \(\alpha = 1 \) we know how to compute the Mellin transform of the stock (so option pricing is possible).
The Hypergeometric Stochastic Volatility Model

\[
\mathbb{E} \left[\left(\frac{f_t}{f_0} \right)^\lambda \right] = \mathbb{E} \left[\exp \left(-\frac{\lambda}{2} \int_0^t e^{2\nu_u} du + \lambda \int_0^t e^{2\nu_u} dw_{1,u} \right) \right] \\
= e^{-\frac{\lambda \rho}{\sigma} e^{\nu_0}} \mathbb{E} \left[\exp \left(\alpha_0 e^{\nu_t} + \alpha_1 \int_0^t e^{\nu_s} ds - \frac{\alpha_2^2}{2} \int_0^t e^{2\nu_s} ds \right) \right]
\]

with

\[
\alpha_0 = \frac{\lambda \rho}{\sigma} \quad \alpha_1 = -\frac{\lambda \rho}{\sigma} \left(a + \frac{\sigma^2}{2} \right) \quad \alpha_2 = -\lambda^2 (1 - \rho^2) - \frac{2b\rho \lambda}{\sigma} + \lambda.
\]

and \(dv_t = (a - be^{\nu_t}) dt + \sigma dw_{2,t} \).

Girsanov's theorem to cancel the drift of the volatility

\[
\mathbb{E} \left[\left(\frac{f_t}{f_0} \right)^\lambda \right] = e^{-\frac{a}{\sigma^2} e^{\nu_0} + \frac{b - \lambda \rho}{\sigma^2} e^{\nu_0} - \frac{a^2}{2\sigma^2} \mathbb{E}^{Q} \left[\exp \left(a \nu_t + \beta_0 e^{\nu_t} + \beta_1 \int_0^t e^{\nu_s} ds - \frac{\beta_2^2}{2} \int_0^t e^{2\nu_s} ds \right) \right]} \\
= e^{-\frac{a}{\sigma^2} e^{\nu_0} + \frac{b - \lambda \rho}{\sigma^2} e^{\nu_0}} \mathbb{E}^{Q} \left[\exp \left(a \nu_t + \beta_0 e^{\nu_t} + \beta_1 \int_0^t e^{\nu_s} ds - \frac{\beta_2^2}{2} \int_0^t e^{2\nu_s} ds \right) \right]
\]

with

\[
\beta_0 = \frac{\lambda \rho \sigma - b}{\sigma^2} \quad \beta_1 = (b - \lambda \rho \sigma) \left(\frac{a}{\sigma^2} + \frac{1}{2} \right) \quad \beta_2 = -\lambda^2 (1 - \rho^2) + \lambda \left(1 - \frac{2b \rho}{\sigma} \right) + \frac{b^2}{\sigma^2}.
\]

and \(dv_t = \sigma d\tilde{w}_{2,t} \)
The Hypergeometric Stochastic Volatility Model

\[F(t, v) = E^Q \left[\exp \left(\frac{av_t}{\sigma^2} + \beta_0 e^{v_t} + \beta_1 \int_0^t e^{v_s} ds - \frac{\beta_2^2}{2} \int_0^t e^{2v_s} ds \right) \right] \]

(8)

and \(F(0, v) = \exp \left(\frac{av}{\sigma^2} + \beta_0 e^v \right) \). \(F(t, v) \) solves the PDE:

\[
\partial_t F = \frac{\sigma^2}{2} \frac{d^2 F}{dv^2} - \frac{\beta_2^2}{2} e^{2v} F + \beta_1 e^v F,
\]

so \(F(t) = e^{-Ht} F(0) \) and in integral form:

\[
F(t, v_0) = \int_{-\infty}^{+\infty} q(\sigma^2 t, v_0, y) F(0, y) dy
\]

- \(q \) is the heat kernel.

- \(-\frac{\beta_2^2}{2} e^{2v} + \beta_1 e^v \) is the potential (well known): Morse potential.
The Hypergeometric Stochastic Volatility Model

The Laplace transform of the HK is known

\[
G(v, y; s^2/2) = \int_0^{+\infty} e^{-\frac{s^2}{2}t} q(t, v, y) dt = \int_0^{+\infty} e^{-\frac{s^2}{2}t} e^{-Ht} dt.
\]

\[
= \left(\frac{s^2}{2} + H\right)^{-1}
\]

\(G\) is the fundamental solution (the Green function, or the resolvant) of \(H + \frac{s^2}{2} = 0\) that is to say \(G\) solves:

\[
-\frac{\sigma^2}{2} \frac{d^2 G}{dv^2} + \frac{\beta_2^2}{2} e^{2v} G - \beta_1 e^v G + \frac{s^2}{2} = \delta_y
\]

(9)

\[
G(v, y; \eta^2/2) = \frac{\Gamma\left(\eta - \frac{\nu_1}{\nu_2} + \frac{1}{2}\right)}{\nu_2 \Gamma(1 + 2\eta)} e^{-(v+y)/2} W_{\frac{\nu_1}{\nu_2}, \eta} (2\nu_2 e^{y>}) M_{\frac{\nu_1}{\nu_2}, \eta} (2\nu_2 e^{y<})
\]

with \(\nu_1, \nu_2\) related to \(\beta_1, \beta_2, \eta\) to \(s\) and \(y_> = \max(v, y), y_< = \min(v, y)\), \(W_{\kappa, \eta}\) and \(M_{\kappa, \eta}\) are the Whittaker functions (related to confluent hypergeometric functions):

\[
W_{\kappa, \eta}(z) = z^{\eta+\frac{1}{2}} e^{-z/2} \Psi\left(\eta - \kappa + \frac{1}{2}, 1 + 2\eta; z\right)
\]

\[
M_{\kappa, \eta}(z) = z^{\eta+\frac{1}{2}} e^{-z/2} \Phi\left(\eta - \kappa + \frac{1}{2}, 1 + 2\eta; z\right).
\]
The Hypergeometric Stochastic Volatility Model

1. \(G \) is known.

2. \(q \) is the inverse Laplace transform of \(G \).

3. We integrate \(q \) over \(F(0, v) \) it gives the Mellin transform of the spot.

4. We compute the inverse Mellin transform of the spot to get the option price.
Conclusions

• we develop a stochastic volatility model with positive volatility
• we provide the main results to perform option pricing
Open Problems

- all the problems are open....