The Isomorphism Problem for Automatic Trees and Linear Orders

Jiamou Liu
Auckland University of Technology, New Zealand

(Joint work with D.Kuske and M.Lohrey)
Barcelona, Spain, 2011
A structure \mathcal{A} consists of a set D (universes) and relations and functions on D. We assume all structures are countably infinite and relational.

Computable structures:
- Universe is a computable set
- Relations are computable.
A structure \mathcal{A} consists of a set D (universes) and relations and functions on D. We assume all structures are countably infinite and relational.

- **Computable structures:**
 - Universe is a computable set
 - Relations are computable.

- **Automatic Structures [Khoussainov&Nerode 1995]:** Replace Turing machines by finite automata.
Automata recognizing relations

Definition. For words $w_1, \ldots, w_n \in \Sigma^*$, the convolution is the word $\otimes(w_1, \ldots, w_n)$ in alphabet $(\Sigma \cup \{\text{⋄}\})^n$.

where $\ell = \max\{|w_i|, 1 \leq i \leq n\}$ and $w'_i[j] = w_i[j]$ if $j < |w_i|$ and ⋄ otherwise.

Definition. An n-ary relation $R \subseteq (\Sigma^*)^n$ is automatic if the language $\otimes R = \{\otimes(w) | w \in R\}$ is accepted by some automaton M.

Jiamou Liu Auckland University of Technology, New Zealand
The Isomorphism Problem for Automatic Trees and Linear Orders
Definition.

For words $w_1, \ldots, w_n \in \Sigma^*$, the convolution is the word $\otimes(w_1, \ldots, w_n)$ in alphabet $(\Sigma \cup \{\diamond\})^n$

$$(w'_1[1], \ldots, w'_n[1])(w'_1[2], \ldots, w'_n[2])(w'_1[3], \ldots, w'_n[3]) \cdots (w'_1[\ell], \ldots, w'_n[\ell]).$$

where $\ell = \max\{|w_i| \mid 1 \leq i \leq n\}$ and $w'_i[j] = w_i[j]$ if $j < |w_i|$ and \diamond otherwise.
Definition.

For words $w_1, \ldots, w_n \in \Sigma^*$, the convolution is the word $\otimes(w_1, \ldots, w_n)$ in alphabet $(\Sigma \cup \{\diamond\})^n$

$$(w_1'[1], \ldots, w_n'[1])(w_1'[2], \ldots, w_n'[2])(w_1'[3], \ldots, w_n'[3]) \cdots (w_1'[\ell], \ldots, w_n'[\ell]).$$

where $\ell = \max\{|w_i| | 1 \leq i \leq n\}$ and $w_i'[j] = w_i[j]$ if $j < |w_i|$ and \diamond otherwise.

e.g. $\otimes(010, 11100) = (\diamond)(1)(\diamond)(\diamond)(\diamond)(\diamond)$
Definition.

For words $w_1, \ldots, w_n \in \Sigma^*$, the convolution is the word $\otimes(w_1, \ldots, w_n)$ in alphabet $(\Sigma \cup \{\Diamond\})^n$

$$(w'_1[1], \ldots, w'_1[1])(w'_1[2], \ldots, w'_1[2])(w'_1[3], \ldots, w'_1[3]) \cdots (w'_1[\ell], \ldots, w'_n[\ell]).$$

where $\ell = \max\{|w_i| \mid 1 \leq i \leq n\}$ and $w'_i[j] = w_i[j]$ if $j < |w_i|$ and \Diamond otherwise.

e.g. $\otimes(010, 11100) = (0(1)(1)(0)(\Diamond)(\Diamond)(\Diamond))$

Definition.

An n-ary relation $R \subseteq (\Sigma^*)^n$ is automatic if the language $\otimes R = \{\otimes(w) \mid w \in R\}$ is accepted by some automaton M.

Jiamou Liu Auckland University of Technology, New Zealand The Isomorphism Problem for Automatic Trees and Linear Orders
A structure S is **automatic** if its domain D is a regular language and each of its relation R is automatic.
Definition.[KN]

A structure S is **automatic** if its domain D is a regular language and each of its relation R is automatic.

If an automatic structure S' is isomorphic to a structure S, then S' is an **automatic copy** of S. In this case, S is **automatically presentable**, we simply say automatic.
Definition.[KN]

- A structure S is **automatic** if its domain D is a regular language and each of its relation R is automatic.
- If an automatic structure S' is isomorphic to a structure S, then S' is an **automatic copy** of S. In this case, S is **automatically presentable**, we simply say automatic.
- Any tuple P of automata that accept the domain and the relations of S is called an **automatic presentation** of S.
Examples of automatic structures

- \((\mathbb{N}; <) \cong (0^*; \{\otimes(0^i, 0^j) | i < j\})\).
- \((\mathbb{N}; +)\)
- \((\mathbb{Q}; \leq) \cong ((0 + 1)^*1; \leq_{\text{lex}})\).
- The **full tree** \((\mathbb{N}^*; \leq_{\text{pref}}) \cong (\{1\} \cup 1\{0, 1\}^*1; \leq_{\text{pref}})\).
- Configuration graph of a Turing machine.
Theorem. [KN]
There is an algorithm that, given an automatic structure S and a FO-formula $\varphi(n)$, produces an automaton recognizing precisely those tuples $\bar{a} \in S$ that make φ true. In particular the FO-theory of S is decidable.
Theorem. [KN]

There is an algorithm that, given an automatic structure S and a FO-formula $\varphi(\overline{n})$, produces an automaton recognizing precisely those tuples $\overline{a} \in S$ that make φ true. In particular the FO-theory of S is decidable.

[Blumensath, Rubin, Kuske, Lohrey, etc.] FO-decidability also holds if we extend FO by \exists^∞, $\exists^{(m,n)}$, and some restricted form of SO existential quantifier.
The Isomorphism Problem

Fix a class \mathcal{K} of structures. Decide if two automatic presentations recognize the same structure up to isomorphism, i.e.,

$$\{ < P_1, P_2 > \mid S(P_1), S(P_2) \in \mathcal{K} \land \exists f : S(P_1) \cong S(P_2) \}$$
The Isomorphism Problem

Fix a class \mathcal{K} of structures. Decide if two automatic presentations recognize the same structure up to isomorphism, i.e.,

$$\{< P_1, P_2 | S(P_1), S(P_2) \in \mathcal{K} \land \exists f : S(P_1) \cong S(P_2)\}$$

- **Automatic Structures** Σ_1^1-complete [KNRS]
- **Automatic well-orders/Boolean algebras** Decidable [KNRS]
- **Automatic** (a) successor trees (b) undirected graphs (c) commutative monoids (d) partial orders (e) lattices of height 4 (f) unary functions. Σ_1^1-complete [Nies]
- **Automatic locally finite graphs** Π_3^0-complete [Rubin]
Structures with a transitive relation

Questions[KN08]

- What about for other classes of structures? e.g. equivalence structures, order trees, linear orders

- For any level of the arithmetic hierarchy, give a class of automatic structures for which isomorphism problem is complete for that level.
Structures with a transitive relation

Questions[KN08]

- What about for other classes of structures? e.g. equivalence structures, order trees, linear orders
- For any level of the arithmetic hierarchy, give a class of automatic structures for which isomorphism problem is complete for that level.

Theorem.[Kuske,Liu,Lohrey10]

The isomorphism problem is

- Π^0_1-complete for automatic equivalence structures.
- Π^0_{2n-3}-complete for automatic trees of height n ($n \geq 2$).
- Computably equivalent to true arithmetic for automatic trees of finite height.
- Not arithmetical for automatic linear orders.
Hilbert’s 10th problem:
\[\{ p \in \mathbb{Z}[x_1, \ldots, x_k] \mid \exists x_1, \ldots, x_k \in \mathbb{N}^+: p(x_1, \ldots, x_k) = 0 \} . \]
Hilbert’s 10th problem:
\[\{ p \in \mathbb{Z}[x_1, \ldots, x_k] \mid \exists x_1, \ldots, x_k \in \mathbb{N}^+: p(x_1, \ldots, x_k) = 0 \} \]

[Matiyasevich] The following problem is \(\Pi_1^0 \)-complete:

\[\text{Prob} = \{ < p_1, p_2 > \mid p_i \in \mathbb{N}[x_1, \ldots, x_k], \forall x_1, \ldots, x_k \in \mathbb{N}^+: p_1(x_1, \ldots, x_k) \neq p_2(x_1, \ldots, x_k) \} \]
Hilbert’s 10th problem:
\[
\{ p \in \mathbb{Z}[x_1, \ldots, x_k] \mid \exists x_1, \ldots, x_k \in \mathbb{N}^+ : p(x_1, \ldots, x_k) = 0 \}.
\]

[Matiyasevich] The following problem is \(\Pi^0_1 \)-complete:

\[
\text{Prob} = \{ <p_1, p_2> \mid p_i \in \mathbb{N}[x_1, \ldots, x_k], \forall x_1, \ldots, x_k \in \mathbb{N}^+ : p_1(x_1, \ldots, x_k) \neq p_2(x_1, \ldots, x_k) \}.
\]

[Honkala 06] For any polynomial \(p \in \mathbb{N}[x_1, \ldots, x_n] \), we can construct an automaton \(\mathcal{A}_p \) such that on input word \(\otimes(0^{x_1}, \ldots, 0^{x_n}) \), \(\mathcal{A}_p \) has exactly \(p(x_1, \ldots, x_n) \) accepting runs.
Hilbert’s 10th problem:
\[\{ p \in \mathbb{Z}[x_1, \ldots, x_k] \mid \exists x_1, \ldots, x_k \in \mathbb{N}^+ : p(x_1, \ldots, x_k) = 0 \} \].

[Matiyasevich] The following problem is \(\Pi^0_1 \)-complete:
\[\text{Prob} = \{ < p_1, p_2 > \mid p_i \in \mathbb{N}[x_1, \ldots, x_k], \forall x_1, \ldots, x_k \in \mathbb{N}^+ : p_1(x_1, \ldots, x_k) \neq p_2(x_1, \ldots, x_k) \} \].

[Honkala 06] For any polynomial \(p \in \mathbb{N}[x_1, \ldots, x_n] \), we can construct an automaton \(\mathcal{A}_p \) such that on input word \(0^{x_1}, \ldots, 0^{x_n} \), \(\mathcal{A}_p \) has exactly \(p(x_1, \ldots, x_n) \) accepting runs.

We can construct automatic height-2 trees \(T^2_{p_1, p_2}, T^2_{\text{Good}}, T^2_{\text{Bad}, m} \) (\(m \in \mathbb{N} \)) such that
- \(< p_1, p_2 > \in \text{Prob} \) if and only if \(T^2_{p_1, p_2} \cong T^2_{\text{Good}} \)
- \(< p_1, p_2 > \notin \text{Prob} \) if and only if \(T^2_{p_1, p_2} \cong T^2_{\text{Bad}, m} \) for some \(m \).
Fix an injective polynomial $C : \mathbb{N}^2 \to \mathbb{N}$.

The tree $T^2_{p_1,p_2}$, T^2_{Good}, $T^2_{\text{Bad},m}$.
Trees of Height > 2

This construction can be generalized to trees of arbitrary finite height > 2 to show the Π_0^2-completeness mentioned above. Here we want to show that the isomorphism problem for all automatic order trees is Σ_1^1-complete. For this we only need Σ_0^2-hardness for automatic trees of height 3.
This construction can be generalized to trees of arbitrary finite height > 2 to show the Π^0_{2n-3}-completeness mentioned above.
• This construction can be generalized to trees of arbitrary finite height > 2 to show the Π^0_{2n-3}-completeness mentioned above.

• Here we want to show that the isomorphism problem for all automatic order trees is Σ^1_1-complete.
This construction can be generalized to trees of arbitrary finite height > 2 to show the Π^0_{2n-3}-completeness mentioned above.

Here we want to show that the isomorphism problem for all automatic order trees is Σ^1_1-complete.

For this we only need Σ^0_2-hardness for automatic trees of height 3.
Lemma.

There exists two height-3 trees T^3_{Good} and T^3_{Bad} ($T^3_{Good} \not\cong T^3_{Bad}$) such that the following holds: For a given Σ^0_2-set $A \subseteq \{0, 1\}^*1$ one can effectively construct an automatic forest F_A of height 3 such that

- The set of roots of F_A is $\{0, 1\}^*1$.
- For every $w \in \{0, 1\}^*1$, $F_A(w) \cong T^3_{Good}$ if $w \in A$ and $F_A(w) \cong T^3_{Bad}$ if $w \notin A$.
The Isomorphism Problem for Automatic Trees and Linear Orders
Theorem. [Kuske, Liu, Lohrey, in preparation]
The isomorphism problem for automatic order trees is Σ_1^1-complete.
A computable tree is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^\star$. The isomorphism problem for computable trees is Σ^1_1-complete.

Start with the automatic presentation $(\{1\} \cup \{0,1\}^\star; \leq \text{pref})$ of the full tree $(\mathbb{N}^\star; \leq \text{pref})$.

For a computable tree T, construct an automatic order tree $\text{aut}(T)$ as follows:

- Append to each node $x \in \mathbb{N}^\star$ of the full tree a copy of the tree T if and only if $x \in T$; and append a copy of T if $x < T$.

$T \equiv T'$ if and only if $\text{aut}(T) \equiv \text{aut}(T')$.

Proof

Jiamou Liu Auckland University of Technology, New Zealand

The Isomorphism Problem for Automatic Trees and Linear Orders
A computable tree is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^*$.

The isomorphism problem for computable trees is Σ^1_1-complete.
A computable tree is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^*$. The isomorphism problem for computable trees is Σ_1^1-complete.
Proof

- A **computable tree** is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^*$.

- The isomorphism problem for computable trees is Σ^1_1-complete.

- Start with the automatic presentation $(\{1\} \cup \{0, 1\}^*1; \leq_{\text{pref}})$ of the full tree $(\mathbb{N}^*; \leq_{\text{pref}})$.

A computable tree is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^*$. The isomorphism problem for computable trees is Σ_1^1-complete.

Start with the automatic presentation $(\{1\} \cup \{0,1\}^*1; \leq_{\text{pref}})$ of the full tree $(\mathbb{N}^*; \leq_{\text{pref}})$.

For a computable tree T, construct an automatic order tree $\text{aut}(T)$ as follows:
- Append to each node $x \in \mathbb{N}^*$ of the full tree a copy of the tree T^3_{Good} if $x \in T$; and append a copy of T^3_{Bad} if $x \notin T$.

Jiamou Liu Auckland University of Technology, New Zealand

The Isomorphism Problem for Automatic Trees and Linear Orders
A computable tree is a prefix-closed and decidable subset $T \subseteq \mathbb{N}^*$. The isomorphism problem for computable trees is Σ^1_1-complete. Start with the automatic presentation $(\{1\} \cup \{0, 1\}^*1; \leq_{\text{pref}})$ of the full tree $(\mathbb{N}^*; \leq_{\text{pref}})$. For a computable tree T, construct an automatic order tree $\text{aut}(T)$ as follows:
- Append to each node $x \in \mathbb{N}^*$ of the full tree a copy of the tree T^3_{Good} if $x \in T$; and append a copy of T^3_{Bad} if $x \notin T$.

$T \cong T'$ if and only if $\text{aut}(T) \cong \text{aut}(T')$
The isomorphism problem for automatic linear order is \(\Sigma^1_1 \)-complete.

Proof. Recall \((\{0,1\}^*, \leq_{\text{lex}})\) is a copy of \((\mathbb{Q}; \leq)\). From a computable linear order \(L\), one can compute an index of a computable set \(P(L) \subseteq \{0,1\}^*\) whose complement is dense in \((\{0,1\}^*, \leq_{\text{lex}})\) such that \(L \sim L'\) iff \(P(L) \sim P(L')\). There exist two automatic linear orders \(M_0\) and \(M_1\) such that we can construct an automatic linear order \(\text{aut}(L)\) by replacing each \(w \in \{0,1\}^*\) by a copy of \(M_0\) if \(w \in P(L)\), and replacing \(w\) by a copy of \(M_1\) if \(w < P(L)\).
The isomorphism problem for automatic linear order is Σ^1_1-complete.

Proof.

Recall $(\{0,1\}^*, \leq_{\text{lex}})$ is a copy of (\mathbb{Q}, \leq). From a computable linear order L, one can compute an index of a computable set $P(L) \subseteq \{0,1\}^*$ whose complement is dense in $(\{0,1\}^*, \leq_{\text{lex}})$ such that $L \equiv L'$ if $(\{0,1\}^*, \leq_{\text{lex}}, P(L)) \equiv (\{0,1\}^*, \leq_{\text{lex}}, P(L'))$. There exist two automatic linear orders M_0, M_1 such that we can construct an automatic linear order $\text{aut}(L)$ by replacing each $w \in \{0,1\}^*$ by a copy of M_0 if $w \in P(L)$, and replacing w by a copy of M_1 if $w < P(L)$. If $(\{0,1\}^*, \leq_{\text{lex}}, P(L)) \equiv (\{0,1\}^*, \leq_{\text{lex}}, P(L'))$, then $\text{aut}(L) \equiv \text{aut}(L')$.

Jiamou Liu
Auckland University of Technology, New Zealand

The Isomorphism Problem for Automatic Trees and Linear Orders
The isomorphism problem for automatic linear order is Σ_1^1-complete.

Proof.

- Recall $(\{0, 1\}^*; \leq_{\text{lex}})$ is a copy of $(\mathbb{Q}; \leq)$.

Jiamou Liu Auckland University of Technology, New Zealand
Theorem [KLL, in preparation]
The isomorphism problem for automatic linear order is Σ_1^1-complete.

Proof.

- Recall $([0, 1]^*1; \leq_{lex})$ is a copy of $(\mathbb{Q}; \leq)$.
- From a computable linear order L, one can compute an index of a computable set $P(L) \subseteq [0, 1]^*1$ whose complement is dense in $([0, 1]^*1; \leq_{lex})$ such that $L \cong L'$ iff $([0, 1]^*1; \leq_{lex}, P(L)) \cong ([0, 1]^*1; \leq_{lex}, P(L'))$.
Theorem [KLL, in preparation]

The isomorphism problem for automatic linear order is Σ^1_1-complete.

Proof.

- Recall $([0, 1]^*1; \leq_{\text{lex}})$ is a copy of $(\mathbb{Q}; \leq)$.
- From a computable linear order L, one can compute an index of a computable set $P(L) \subseteq \{0, 1\}^*1$ whose complement is dense in $([0, 1]^*1; \leq_{\text{lex}})$ such that $L \cong L'$ iff $([0, 1]^*1; \leq_{\text{lex}}, P(L)) \cong ([0, 1]^*1; \leq_{\text{lex}}, P(L'))$.
- There exist two automatic linear orders M_0, M_1 such that
 - We can construct an automatic linear order $\text{aut}(L)$ by replacing each $w \in \{0, 1\}^*1$ by a copy of M_0 if $w \in P(L)$, and replacing w by a copy of M_1 if $w \notin P(L)$.

Jiamou Liu Auckland University of Technology, New Zealand
Theorem [KLL, in preparation]

The isomorphism problem for automatic linear order is \(\Sigma^1_1 \)-complete.

Proof.

- Recall \((\{0, 1\}^*; \leq_{\text{lex}})\) is a copy of \((\mathbb{Q}; \leq)\).
- From a computable linear order \(L\), one can compute an index of a computable set \(P(L) \subseteq \{0, 1\}^*1\) whose complement is dense in \((\{0, 1\}^*1; \leq_{\text{lex}})\) such that \(L \cong L'\) iff \((\{0, 1\}^*1; \leq_{\text{lex}}, P(L)) \cong (\{0, 1\}^*1; \leq_{\text{lex}}, P(L'))\).
- There exist two automatic linear orders \(M_0, M_1\) such that
 - We can construct an automatic linear order \(\text{aut}(L)\) by replacing each \(w \in \{0, 1\}^*1\) by a copy of \(M_0\) if \(w \in P(L)\), and replacing \(w\) by a a copy of \(M_1\) if \(w \notin P(L)\).
 - \((\{0, 1\}^*; \leq_{\text{lex}}, P(L)) \cong (\{0, 1\}^*; \leq_{\text{lex}}, P(L'))\) iff \(\text{aut}(L) \cong \text{aut}(L')\).
Corollary

There exists two isomorphic automatic order trees (linear orders) without a hyperarithmetic isomorphism.