QUASICONTINUOUS SELECTIONS OF
UPPER CONTINUOUS SET-VALUED
MAPPINGS

Abstract
In this paper, we extend a theorem of Matejdes on quasicontinuous selections of upper Baire continuous set-valued mappings from compact (or separable) metric range spaces to regular T_1 range spaces. In addition, we also prove a quasicontinuous selection theorem for a special class of upper semicontinuous set-valued mappings.

1 Introduction.
Let $T : X \to 2^Y$ be a set-valued mapping with non-empty values. By a selection f of T, we mean a single-valued mapping $f : X \to Y$ such that $f(x) \in T(x)$ for all $x \in X$. A well-known theorem of Michael on selections in [8] claims that any lower semicontinuous set-valued mapping $T : X \to 2^Y$ with non-empty closed convex values acting from a paracompact space X into a Banach space Y has a continuous selection. However, the conclusion of this theorem fails when lower semicontinuity is replaced by upper semicontinuity. For example, the set-valued mapping $T : \mathbb{R} \to 2^\mathbb{R}$, defined by

$$T(x) := \begin{cases} \{1/x\} & \text{if } x \neq 0 \\ \mathbb{R} & \text{if } x = 0 \end{cases}$$
is upper semicontinuous with non-empty closed convex values. Note that this mapping does not even possess a quasicontinuous selection. Recall that a (single-valued) mapping \(f : X \to Y \) is *quasicontinuous* if for every pair of open sets \(U \subseteq X \) and \(W \subseteq Y \) with \(f(U) \cap W \neq \emptyset \), there exists a non-empty open set \(V \subseteq U \) such that \(f(V) \subseteq W \). In a series of papers \([4, 5, 6, 7]\), Matejdes studied the problem of when a set-valued mapping admits a quasicontinuous selection. To achieve his goal, Matejdes introduced the following definition, \([4]\).

Definition 1.1 (\([4]\)). A set-valued mapping \(T : X \to 2^Y \) is called *upper Baire continuous* at a point \(x \in X \) if for each pair of open sets \(U \) and \(W \) with \(x \in U \) and \(T(x) \subseteq W \), there is a subset \(B \subseteq U \) of the second category, having the Baire property, such that \(T(z) \subseteq W \) for all \(z \in B \).

We shall say that a set-valued mapping \(T : X \to 2^Y \) is *upper Baire continuous* if it is upper Baire continuous at every point of \(X \), and a Baire continuous single-valued mapping is just a special case of an upper Baire continuous set-valued mapping. Analogously, one can define lower Baire continuity for a set-valued mapping. However, we shall not do so here, since we are not going to use such a notion in this paper.

The following two facts on (upper) Baire continuity of mappings can be readily proved:

- If \(f : X \to 2^Y \) is upper Baire continuous with non-empty values, then \(X \) is Baire.
- If a (single-valued) mapping \(f : X \to Y \) is Baire continuous, \(X \) is Baire and \(Y \) is regular, then \(f \) must be quasicontinuous, \([4]\).

Using the previous two facts Matejdes proved the following theorem.

Theorem 1.2 (\([4]\)). Let \(X \) be a \(T_1 \)-space and \(Y \) be a compact metric space. If \(T : X \to 2^Y \) is upper Baire continuous with non-empty compact values, then \(T \) admits a quasicontinuous selection.

In \([5]\), it was further shown that the compactness of \(Y \) in the previous theorem can be relaxed to the separability of \(Y \). The main purpose of this paper is to extend Theorem 1.2 using a different approach. Specifically, in Section 2, we show that the conclusion of Theorem 1.2 still holds when the condition “\(Y \) be a compact (or separable) metric space” is weakened to “\(Y \) be a regular \(T_1 \)-space”. The last section is dedicated to the study of quasicontinuous selections of a special class of upper semicontinuous set-valued mappings. Throughout the paper, \(T : X \to 2^Y \) always denotes a set-valued mapping acting from a topological space \(X \) to a topological space \(Y \) and \(f : X \to Y \) stands for a
single-valued mapping from X into Y. The graph $\text{Gr}(T)$ of $T : X \to 2^Y$ is defined by

$$\text{Gr}(T) := \{(x, y) \in X \times Y : y \in T(x)\}.$$

All of our notation is standard and any undefined concepts may be found in the references.

2 An Extension of Theorem 1.2.

Let X be a topological space. Recall that a set $A \subseteq X$ is said to be residual if $X \setminus A$ is a set of first category. As usual, the symmetric difference of two sets A and B in X is denoted by $A \Delta B$. A set $A \subseteq X$ is said to have the Baire property if $A \Delta G$ is a set of the first category for some open set $G \subseteq X$.

The following characterization for upper Baire continuity of a set-valued mapping is easier to work with than the original definition in Definition 1.1.

Lemma 2.1. A set-valued mapping $T : X \to 2^Y$ with non-empty values is upper Baire continuous if, and only if, X is Baire and for each pair of open subsets U and W with $x \in U$ and $T(x) \subseteq W$, there exist a non-empty open set $V \subseteq U$ and a residual set $R \subseteq V$ such that $T(z) \subseteq W$ for all $z \in R$.

Proof. (\Rightarrow). Suppose that $T : X \to 2^Y$ is upper Baire continuous. First, by remarks in Section 1, X must be Baire. Furthermore, by the definition, for each pair of open sets U and W with $x \in U$ and $T(x) \subseteq W$, there exists some subset $B \subseteq U$ of the second category having the Baire property such that $T(z) \subseteq W$ for all $z \in B$. Let $B = G \Delta C$, where G is an open set and C is a set of the first category. Next, put $V = G \cap U$ and $R = G \setminus C$. Then $V \subseteq U$ is a non-empty open set and R is a residual set in V such that $T(z) \subseteq W$ for each $z \in R$.

(\Leftarrow). Conversely, suppose that X is Baire and for each pair of open sets U and W with $x \in U$ and $T(x) \subseteq W$, there exists a non-empty open subset $V \subseteq U$ and a residual subset $R \subseteq V$ such that $T(z) \subseteq W$ for all $z \in R$. Since V is of the second category, then R must be of the second category. In addition, $R = V \Delta (V \setminus R)$. Thus, R has the Baire property as well.

Our next theorem extends Theorem 1.2 from a compact (or separable) metric range space to an arbitrary regular T_1 range space.

Theorem 2.2. Let X be a topological space and Y be a regular T_1-space. If $T : X \to 2^Y$ is an upper Baire continuous set-valued mapping with non-empty compact values, then T admits a quasicontinuous selection.
Proof. First, by Lemma 2.1, \(X \) must be a Baire space. Let \(\mathcal{M} \) be the family of all upper Baire continuous set-valued mappings from \(X \) to \(Y \) with non-empty compact values such that for every \(H \in \mathcal{M}, \text{Gr}(H) \subseteq \text{Gr}(T) \). Since \(T \in \mathcal{M}, \mathcal{M} \neq \emptyset \). We define a partial order \(\preceq \) on \(\mathcal{M} \) by writing

\[
H_1 \preceq H_2 \text{ if, and only if, } \text{Gr}(H_1) \subseteq \text{Gr}(H_2).
\]

Next, we show that \(\mathcal{M} \) has a minimal element. To this end, let \(\mathcal{M}_0 \) be any linearly ordered non-empty subfamily of \(\mathcal{M} \). Then, define a set-valued mapping \(H_{\mathcal{M}_0} : X \to 2^Y \) by letting

\[
H_{\mathcal{M}_0}(x) := \bigcap \{H(x) : H \in \mathcal{M}_0\}
\]

for all \(x \in X \). Fix an arbitrary point \(x_0 \in X \). Since \(\{H(x_0) : H \in \mathcal{M}_0\} \) is a linearly ordered family of non-empty compact subsets of \(Y \), \(H_{\mathcal{M}_0}(x_0) \) is also a non-empty compact subset of \(Y \). Now, suppose that \(U \subseteq X \) and \(W \subseteq Y \) are a pair of non-empty open subsets with \(x_0 \in U \) and \(H_{\mathcal{M}_0}(x_0) \subseteq W \). Then, there must be some element \(H \in \mathcal{M}_0 \) such that \(H(x_0) \subseteq W \). By upper Baire continuity of \(H \) at \(x_0 \), there is a non-empty open set \(V \subseteq U \) and a residual subset \(R \subseteq V \) such that \(H(x) \subseteq W \) for all \(x \in R \). This implies that \(H_{\mathcal{M}_0}(x) \subseteq W \) for all \(x \in R \). Thus, \(H_{\mathcal{M}_0} \in \mathcal{M} \). By Zorn’s lemma, \(\mathcal{M} \) has a minimal member, which we will denote by \(\Phi_{\mathcal{M}} \).

Claim 1. For each pair of open subsets \(U \subseteq X \) and \(W \subseteq Y \) such that \(\Phi_{\mathcal{M}}(U) \cap W \neq \emptyset \), there exist a non-empty open subset \(V \subseteq U \) and a residual set \(R \subseteq V \) such that \(\Phi_{\mathcal{M}}(x) \subseteq W \) for all \(x \in R \).

Proof. Suppose the contrary. Then, there is a pair of open subsets \(U \subseteq X \) and \(W \subseteq Y \) with \(\Phi_{\mathcal{M}}(U) \cap W \neq \emptyset \) such that for every non-empty open subset \(V \subseteq U \) and every residual subset \(R \subseteq V \) there exists an \(x \in R \) such that \(\Phi_{\mathcal{M}}(x) \not\subseteq W \). Since \(\Phi_{\mathcal{M}} \) is upper Baire continuous, this implies that \(\Phi_{\mathcal{M}}(x) \not\subseteq W \) for any \(x \in U \). Next, we define a set-valued mapping \(\Gamma : X \to 2^Y \) by

\[
\Gamma(x) := \begin{cases}
\Phi_{\mathcal{M}}(x) \cap \{Y \setminus W\} & \text{if } x \in U \\
\Phi_{\mathcal{M}}(x) & \text{otherwise.}
\end{cases}
\]

Then \(\Gamma \) has non-empty compact values. We will show that \(\Gamma \) is upper Baire continuous. Pick any point \(x_0 \in X \). If \(x_0 \not\in U \), then the result is clear, since \(\Phi_{\mathcal{M}} \) is upper Baire continuous and \(\Gamma \preceq \Phi_{\mathcal{M}} \). Assume \(x_0 \in U \). Let \(U' \) and \(W' \) be a pair of open sets with \(x_0 \in U' \subseteq U \) and \(\Gamma(x_0) \subseteq W' \). Then \(\Phi_{\mathcal{M}}(x_0) \subseteq W \cup W' \). Thus there exist a non-empty open set \(V' \subseteq U' \) and a residual set \(R' \subseteq V' \) such that \(\Phi_{\mathcal{M}}(x) \subseteq W \cup W' \) for all \(x \in R' \). Clearly, \(\Gamma(x) \subseteq W' \) for every point \(x \in R' \). This implies that \(\Gamma \) is upper Baire.
continuous at every point of U. Thus, we have shown that $\Gamma \in \mathcal{M}$. But this is impossible since $\Gamma \preceq \Phi_M$ and $\Phi \neq \Phi_M$. Hence we have obtained our desired contradiction.

Claim 2. Φ_M is single-valued at every point $x \in X$.

Proof. If not, there must exist a point $x_1 \in X$ such that $\Phi_M(x_1)$ contains at least two points. Now, pick any point $y_1 \in \Phi_M(x_1)$, and then define another set-valued mapping $\Psi : X \to 2^Y$ by

$$
\Psi(x) := \begin{cases}
\{y_1\}, & \text{if } x = x_1, \\
\Phi_M(x), & \text{otherwise}.
\end{cases}
$$

It is clear that Ψ has non-empty compact images. Let $x \in X$ and consider open sets $U \subseteq X$ and $W \subseteq Y$ such that $x \in U$ and $\Psi(x) \subseteq W$. By Claim 1, there exist a non-empty open subset $V \subseteq U$ and a residual subset $R \subseteq V$ such that $\Phi_M(x) \subseteq W$ for all $x \in R$. It follows that $\Psi(x) \subseteq W$ for all $x \in R$. Thus Ψ is upper Baire continuous. But, $\Psi \preceq \Phi_M$ and $\Psi \neq \Phi_M$; which contradicts the minimality of Φ_M.

Finally, by Claim 2, Φ_M is a Baire continuous selection of T. Therefore, since X is Baire and Y is regular, Φ_M is quasicontinuous. \hfill \Box

3 Strongly Injective Set-Valued Mappings

In this section, we shall examine when an upper semicontinuous set-valued mapping acting between topological spaces admits a quasicontinuous selection. Recall that a set-valued mapping $T : X \to Y$ from a topological space X into a topological space Y is said to be upper semicontinuous at a point $x_0 \in X$ if for every open subset $V \subseteq Y$ with $T(x_0) \subseteq V$, there exists an open subset $U \subseteq X$ with $x_0 \in U$ such that $T(U) \subseteq V$.

Our considerations are based upon the following notion.

Definition 3.1. A set-valued mapping $T : X \to 2^Y$ is strongly injective if $T(x_1) \cap T(x_2) = \emptyset$ for any two distinct points $x_1, x_2 \in X$.

Remark 3.2. If $f : X \to Y$ is a surjective mapping, then $f^{-1} : Y \to 2^X$ is strongly injective. In particular, the quotient mapping $q : G \to G/H$ from a (Hausdorff) group G onto a coset space G/H as considered by Michael in [8] is strongly injective. Conversely, for any strongly injective set-valued mapping $T : Y \to 2^X$ with non-empty values and $T(Y) = X$, it is easy to see that there exists a mapping $f : X \to Y$ such that $T = f^{-1}$.
Furthermore, we shall also require the definition of property \((**\)) introduced in [2]. Let \(X\) be a space, \(\mathcal{F}\) a proper filter (or filterbase) in \(X\). We shall consider the following \(G(\mathcal{F})\)-game played in \(X\) between players \(A\) and \(B\): Player \(A\) goes first (always!) and chooses a point \(x_1 \in X\). Player \(B\) responds by choosing a member \(F_1 \in \mathcal{F}\). Following this, player \(A\) must select another (possibly the same) point \(x_2 \in F_1\) and in turn player \(B\) must again respond to this by choosing a member \(F_2 \in \mathcal{F}\). Repeating this procedure indefinitely, the players \(A\) and \(B\) produce a sequence \(p = ((x_n, F_n) : n \in \mathbb{N})\) with \(x_{n+1} \in F_n\) for all \(n \in \mathbb{N}\), called a play of the \(G(\mathcal{F})\)-game. We shall say that \(B\) wins a play of the \(G(\mathcal{F})\)-game if the sequence \((x_n : n \in \mathbb{N})\) has a cluster point in \(X\). Otherwise, the player \(A\) is said to have won this play.

We shall call a pair \((\mathcal{F}, \sigma)\) a \(\sigma\)-filter (\(\sigma\)-filterbase) if \(\mathcal{F}\) is a proper filter (filterbase) in \(X\) and \(\sigma\) is a winning strategy for player \(B\) in the \(G(\mathcal{F})\)-game. Finally, we say that a space \(X\) has property \((**\)) if \(\bigcap\{F : F \in \mathcal{F}\} \neq \emptyset\) for each \(\sigma\)-filterbase \((\mathcal{F}, \sigma)\) in \(X\). The class of spaces having property \((**\)) includes all metric spaces [1], all Dieudonné-complete spaces, all function spaces \(C_p(X)\) for compact Hausdorff spaces \(X\), and all Banach spaces in their weak topologies [2].

The following theorem may be deduced from [2, Theorem 3.3].

Theorem 3.3 ([2]). Let \(T : X \rightarrow 2^Y\) be a strongly injective upper semicontinuous set-valued mapping with non-empty closed values. If \(X\) is a regular \(q\)-space and \(Y\) is a regular space with property \((**\))\), then for any point \(x_0 \in X\),

\[
K := \bigcap_{U \in \mathcal{U}(x_0)} \overline{T(U \setminus \{x_0\})}
\]

is a compact subset of \(T(x_0)\), where \(\mathcal{U}(x_0)\) is the family of all neighborhoods of \(x_0\) in \(X\) and \(\overline{T(U \setminus \{x_0\})}\) is the closure of \(T(U \setminus \{x_0\})\) in \(Y\). In addition, the mapping \(T_K : X \rightarrow 2^Y\), defined by

\[
T_K(x) := \begin{cases}
K & \text{if } x = x_0, \\
T(x) & \text{otherwise},
\end{cases}
\]

is upper semicontinuous on \(X\).

Note that, in the previous theorem, if \(x_0 \in X\) is not an isolated point, then \(K\) is non-empty.

Our next selection theorem requires the notion of a minimal usco.
Definition 3.4. We shall call a set-valued mapping \(\varphi : X \to 2^Y \) acting between topological spaces \(X \) and \(Y \) an \textit{usco} mapping if for each \(x \in X \), \(\varphi(x) \) is a nonempty compact subset of \(Y \) and for each open set \(W \) in \(Y \) \{ \(x \in X : \varphi(x) \subseteq W \) \} is open in \(X \). An usco mapping \(\varphi : X \to 2^Y \) is called a \textit{minimal} usco if its graph does not contain, as a proper subset, the graph of any other usco defined on \(X \).

Proposition 3.5 ([3]). Let \(\varphi : X \to 2^Y \) be an usco acting between topological spaces \(X \) and \(Y \). Then \(\varphi \) is a minimal usco if and only if, for each pair of open subsets \(U \) of \(X \) and \(W \) of \(Y \) with \(\varphi(U) \cap W \neq \emptyset \) there exists a non-empty open subset \(V \) of \(U \) such that \(\varphi(V) \subseteq W \). In particular, every selection of a minimal usco is quasicontinuous.

Proposition 3.6 ([3]). Let \(\varphi : X \to 2^Y \) be an usco mapping acting from a topological space \(X \) into a Hausdorff topological space \(Y \). Then there exists a minimal usco \(\psi : X \to 2^Y \) such that \(\psi(x) \subseteq \varphi(x) \) for all \(x \in X \).

Theorem 3.7. Let \(T : X \to 2^Y \) be a strongly injective upper semicontinuous set-valued mapping with nonempty closed values. If \(X \) is a regular \(q \)-space and \(Y \) is a regular Hausdorff space with property \((**) \), then \(T \) admits a quasicontinuous selection.

Proof. For any isolated point \(x \in X \), pick an arbitrary point \(y_x \in T(x) \). Next, define the set-valued mapping \(\Phi : X \to 2^Y \) by,

\[
\Phi(x) := \begin{cases}
\bigcap_{U \in \Phi(x)} T(U \setminus \{x\}) & \text{if } x \text{ is not isolated} \\
\{y_x\} & \text{if } x \text{ is isolated.}
\end{cases}
\]

By Theorem 3.3 and the subsequent remark, \(\Phi \) has non-empty compact values.

Now, fix an arbitrary point \(x_0 \in X \). To show that \(\Phi \) is upper semicontinuous at \(x_0 \), we consider two possible cases. If \(x_0 \) is an isolated point of \(X \), then the upper semicontinuity of \(\Phi \) at \(x_0 \) is trivial. In the case that \(x_0 \) is non-isolated, it follows from the second part of Theorem 3.3. Thus, \(\Phi \) is an usco whose graph is contained in the graph of \(T \). By Proposition 3.6, there exists a minimal usco \(\psi : X \to 2^Y \) such that \(\psi(x) \subseteq \Phi(x) \subseteq T(x) \) for all \(x \in X \).

Now, by Proposition 3.5, \(\psi \) has a quasicontinuous selection \(\sigma : X \to Y \) which in turn is also a selection of \(T \). \(\square \)
Corollary 3.8. Let \(f : X \to Y \) be a closed mapping from a regular \(T_1 \)-space \(X \) with property (**) onto a regular \(q \)-space \(Y \). If \(f^{-1}(y) \) is closed for every \(y \in Y \), then there exists a quasicontinuous mapping \(\varphi : Y \to X \) such that \((f \circ \varphi)(y) = y\) for all \(y \in Y \).

Proof. Note that \(f^{-1} : Y \to 2^X \) is an upper semicontinuous strongly injective set-valued mapping with non-empty closed values. By applying Theorem 3.7, \(f^{-1} \) admits a quasicontinuous selection \(\varphi : Y \to X \). Evidently, \((f \circ \varphi)(y) = y\) for all \(y \in Y \). \(\square \)

Remark 3.9. By [2, Theorem 1.2] and an argument similar to that in Theorem 3.7, one can show the following: Let \(T : X \to 2^Y \) be an upper semicontinuous set-valued mapping from a first countable space \(X \) into a Hausdorff and angelic space \(Y \). If \(T \) is strongly injective, then it admits a quasicontinuous selection. As a consequence of this result, the condition “\(f^{-1}(y) \) is closed for every \(y \in Y \)” in Corollary 3.8 can be dropped when \(X \) is Hausdorff and angelic and \(Y \) is first countable; i.e., for any closed mapping \(f : X \to Y \) from a Hausdorff and angelic space \(X \) onto a first countable space \(Y \), there exists a quasicontinuous mapping \(\varphi : Y \to X \) such that \((f \circ \varphi)(y) = y\) for all \(y \in Y \).

Note Added in Proof: We should observe that the conclusion of Theorem 3.7 remains if we replace the condition “\(T \) is strongly injective” by the weaker hypothesis that “\(T \) is locally strongly injective”; i.e., for each \(x \in X \) there exists a neighborhood \(U \) of \(x \) such that \(T|_U \) is strongly injective on \(U \).

References

