Including the irregularities in the light-weight floor/ceiling model

Hyuck Chunga
Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland, New Zealand

Colin Foxb
Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland, New Zealand

\textbf{ABSTRACT}

Chung and Fox previously presented a mathematical/computational model giving good prediction of low-frequency vibration of light-weight timber based floor/ceiling structures (LTFS) made up of: upper plate, joist beams and ceiling. In that work the geometry of the structure was assumed known, and precise. Experimental data from mock-up LTFS validated that model. In this paper we present an augmentation of that model by including uncertainty in the placement and shape of the timber joists. We calculate the variability in vibration response in the low-frequency range by taking account of measurements of the bending and twisting of 301 timber beams. Although, the model was originally constructed for low-frequency vibration, its usefulness in the mid-frequency range (\textgreater{}150Hz) is discussed. Earlier results showed that the rigidity of the connection between the upper plate and joist beams plays an important role in predicting resonance frequencies and vibration levels. We further consider these connection conditions in the presence of uncertainty.

1 \textbf{INTRODUCTION}

In this paper we extend the recent series of researches on the light weight timber based floor/ceiling structures (LTFS) by the authors and New Zealand scientists ([4,7]). A series of papers by Brunskog and Hammer ([1,2,3]) show the effects of cavity space and the joists in the LTFS. Craik ([5,6]) show the vibration propagation across junctions between flexible plate and beam. Our extensions over their models are, first: inclusion of slippage interaction between the flexible plate and the joists, and second: inclusion of irregularities of the joist properties.

This paper examines the effects of irregularities in the components on the low- to mid-frequency vibrations. The irregularities considered here are the Young's modulus, the shape of the joists and the varying rigidity at the contact between the upper plate and the joists.

In order to cope with the real life structures, the model must be able to incorporate the changes without going through the modelling procedure again. For this reason we chose the variational formulation of the system. The solution, in this case the deflection of the components, is the minima of the total energy in the structure. We show how to incorporate the interaction conditions between components, we use the floor/ceiling configuration shown in figure \ref{floor2draw}.

2 \textbf{RESULTS FROM DETERMINISTIC MODEL}

The authors ([4,7]) have shown that the deterministic model can predict the vibration (shape of the root mean squared velocity) well at a frequency range lower than 80Hz. An examples of the comparison of the root mean squared velocity between the modelling and the experiment results is shown in figure \ref{f2_comp}. The dimension of the structure is 7m by 3.2m. The joists are running in the lengthwise direction.

a Email address: hyuck@math.auckland.ac.nz

b Email address: fox@math.auckland.ac.nz
3 FORMULATION

3.1 Fourier expansion of vibration

The Fourier expansion method is chosen because of the regularity of the shape of the structure, in this case a rectangle. Furthermore so-called mounting condition for common floor/ceiling structures is simply supported. The deflection of the upper plate, ceiling and joists are expanded as follows,

\[w_i(x, y) = \sum_{m,n=1}^{N} c_{mn}^i \phi_m(x) \psi_n(y) \] (1)

\[w_i(x, j) = \sum_{m=1}^{N} c_{mj}^i \phi_m(x) \] (2)

where

\[\phi_m(x) = \frac{2}{A} \sin \frac{k_m x}{A}, \quad \psi_n(y) = \frac{2}{B} \sin \frac{\kappa_n y}{B}, \quad \text{for} \quad m,n = 1,2,...,N \]

and \(k_m = \frac{\pi m}{A}, \kappa_n = \frac{\pi n}{B} \).

The acoustic pressure in the cavity is expressed by Helmholtz equation. Therefore the acoustic pressure can expanded by the Fourier cosine series in the \(\{x,y\} \) plane because the walls of the cavity is assumed to be acoustically hard. By solving the Helmholtz equation using the separation of variables, acoustic pressure \(p(x,y,z) \) can be expanded as

\[p(x,y,z) = \sum_{m,n=0}^{N} (\Gamma_m^{(1)} e^{\gamma_{mn} z} + \Gamma_m^{(2)} e^{-\gamma_{mn} z}) \alpha_m(x) \beta_n(y) \]

where \(\gamma_{mn} = (k_m^2 + \kappa_n^2 - k^2)^{0.5} \) and \(k = \frac{\omega}{c}, c \) being the speed of sound. The modes are

\[\alpha_m(x) = \frac{2}{A} \cos k_m x, \quad \beta_n(y) = \frac{2}{B} \cos \kappa_n y, \quad \text{for} \quad m,n = 1,2,...,N \]

3.2 Energy of the components

We derive the variational formulation of the whole structure with respect to the vectors of the Fourier coefficients of each component. This formulation procedure enables one to change the configuration of the structure because the apparent form of the resulting equations stay unchanged.

The strain energy and the kinetic energy of a Kirchhoff plate (\cite{Fahy85}) is given by

\[\frac{1}{2} \int_{\Omega} \int_{\Omega} \{D^2(\nabla^2 w)^2 + 2(1-\nu)(w_{xx} w_{yy} - w_{xy} w_{yx})\} - m\omega^2 w^2 \} dx dy, \]
and for an Euler beam we have
\[
\frac{1}{2} \int_0^A \{EIw'^2 - mw^2\} dx
\]
where \(w, D, E, I \) and \(m \) are vertical deflection, flexural rigidity, Young's modulus, moment of inertia (of the beam) and mass density, respectively.

The strain energy of the plates and the beams can be expressed using the vectors of the coefficients of the expansion given by equations \ref{platemode} and \ref{beammode},
\[
\pi_i = \frac{1}{2} c_i^T M_i c_i, \quad i = 0,1,2,
\]
where the index \(i = 0,1,2 \) indicates the upper plate, the joists and the ceiling, respectively. Note that the matrices \(M_i \) are diagonal.

We consider the joist beams that are in contact with the upper plate. The deflection of the joists is exactly the same as the upper plate, which leads to the following relationship between \mathbf{c}_0 and \mathbf{c}_1.

\[
\mathbf{c}_0 = L \quad (1.1)
\]
where matrix \mathcal{L} represents the following summation
\[
\sum_{\kappa=1}^N c_0 \mathbf{y}_\kappa (0,1,2,\ldots)
\]

The ceiling is normally attached to the joists by rubber clips that are designed to isolate the vibration of the joists. The potential energy of the rubber connectors is
\[
\frac{\tau}{2} \sum_{\kappa} \{ (\mathbf{c}_0 \mathbf{y}_\kappa) \}
\]
where τ is the spring constant of the rubber connector located at $\{(x_i, y_\kappa)\}$.

3.3 Inclusion of irregularity

\begin{figure}[ptbh]
\begin{center}
includegraphics[height=9cm]{timber_data.eps}
\caption{(a) 10 samples of the measurements of the timber shape. (b) average of the power spectra of the timber shape.}
\end{center}
\end{figure}

The irregularities considered here are three, which are contact rigidity, joist's Young's modulus and shape of the joists. The irregularities are defined as the deviation from the ideal constant value. We denote the parameters by
\[
\begin{align*}
\theta(x_j) & \text{ joist shape} \\
\sigma & \text{ contact rigidity} \\
\sigma & \text{ contact regidity} \\
\varepsilon & \text{ Young's modulus} \\
\varepsilon & \text{ Young's modulus}
\end{align*}
\]
Note that the mean of the above deviations is zero. The above irregularity functions can be characterised using their power spectral density (PSD), for example the PSD of $\sigma(x,j)$ is

$$S_\sigma(\Omega) \frac{1}{2T} \left| \hat{\sigma}(\xi) \right|^2$$

where $\hat{\sigma}(\xi)$ is the Fourier transform of σ and S_σ is the sampling period (see cite{Ochi90}). In the remainder of this subsection, the irregularities are incorporated for the given PSD, $S_\epsilon(\xi)$, $S_\delta(\xi)$ and $S_\epsilon(\xi)$.

The measurement data of the 301 dry pine beams that is currently available to the authors is shown in figure ref{timber_data} as the average of the PSD. Ten examples of measurements are also shown. The dimension the beams is approximately 0.1m by 0.2m and the length is 2.4m. The PSD in figure ref{timber_data} indicates that the beams have mostly two or three twists or four at the most.

3.3.1 Joist shape

The deviation θ gives curves instead of straight lines for the contact between the upper plate and the joists. We first take the Taylor expansion of the vibration modes at the contact curves and omit the higher terms because θ is small.

$$\psi\theta(\xi) = \left(\theta, \right) \sum_{i=0}^{\infty} \left(\kappa\xi \right)^i \frac{d^i\psi}{d\xi^i} \left(\theta \right) \approx \psi\theta(\xi) \theta^2 \left(\theta \right) \left(\theta \right)$$

Note that the first term leads to the zero deviation solution given from the contact condition equation ref{contact}.

The above expansion leads to the following modified contact condition.

$$\sum_{m,k=1}^{NN} \sum_{i=0}^{i=1} \psi \left(\theta \right) + \sum_{m,k=1}^{NN} \sum_{i=0}^{i=1} q_{\epsilon}\psi \left(\theta \right) \left(\theta \right) \approx \psi \left(\theta \right)$$

Using the orthogonal relationship and equation ref{taylor_expansion} gives

$$\psi \left(\theta, \right) \left(\theta \right) \left(\theta \right) \left(\theta \right)$$

where $\psi \left(\theta, \right)$. Hence we rewrite the above equation with matrix notations.

$$\psi = LL \theta$$

The elements of matrix L can be better visualised by rewriting the formula using the convolution of the Fourier transform. Then the elements of L_θ are computed by

$$q_{\kappa} \left(\psi \right) \{ \left(\psi \right) \} \left(\psi \right)$$

(1.3)
where * is the convolution. $\hat{H}(\xi)$ is the Fourier transform of rectangular pulse in $[0,A]$,

$$\hat{H}(\xi) = \frac{i}{\xi} \left(\frac{\sin A \xi}{A \xi} \right)$$

Figure 4 shows illustration of the above convolutions. These timber beams are not intended for the floor/ceiling structures as they have many twists and turns. However, if we were to use the data in our 7 meter long LTFS, figure 4 tells us that we would have to compute higher order off-diagonal terms in L_{θ} in order to capture the irregularity.

We rewrite the above formula so that the deviation part can appear as additive terms to the regular term. The potential energy contribution from the beams is then

$$\pi_{12} \epsilon_{M} L_{\theta} (\omega)$$

Higher order terms may be used when more details of the shape deviation have to be included. When only the first order terms are used, the deviation parts become simple additive terms to the deterministic parts.

\begin{figure}
\begin{center}
\includegraphics[height=7cm]{convolution.eps}
\caption{Illustration of the convolution in equation \ref{theta}, i.e., $\hat{\theta} \ast \hat{H}$. The delta functions are depicted in the third figure as arrows. \label{convolution}}
\end{center}
\end{figure}

3.3.2 Joist Young's modulus

The Young's modulus deviation ϵ can be incorporate using the similar procedure given for θ. The strain energy of the joist beam is

$$\frac{I}{2} \int_{0}^{A} \left(\epsilon^{2} + \left(\frac{d\psi}{dx} \right)^{2} \right) dx$$

where I is the moment of inertia. Again the deviation is expressed by the power spectral density,

$$S_{\epsilon} (\xi,\nu) = \lim_{T \to \infty} \frac{1}{2T} \left| \hat{\epsilon} \right|^{2}$$

where $\hat{\epsilon}$ is the Fourier transform of ϵ.

Using the expansion of w_{1} and ϵ gives

$$\frac{1}{2} \epsilon_{M+\epsilon}$$

where the elements of L_{ϵ} are derived by

$$1k \int_{0}^{A} \left(\frac{d\psi}{dx} \right) \phi \, dx$$

Rewriting the integral part of this equation in the similar manner shown in equation \ref{theta} gives
3.3.3 Contact rigidity

The potential energy due to the slippage resistance is
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{S_{1}} \int_{0}^{A} \left(\sigma_{0} + \sigma_{j} \right) \left(\frac{H}{2} \frac{dw_{1}}{dx} \right)^{2} dx
\end{equation*}
where $H = h_{0} + h_{1}$.

The resulting energy is also written using the matrices and the vectors of the coefficients.
\begin{equation*}
\frac{1}{2} \mathbf{c}_{1}^{\text{t}} \mathcal{N}_{\text{s}} \mathbf{c}_{1}.
\end{equation*}
Matrix \mathcal{N}_{s} can be decomposed into the following deterministic and deviation parts.
\begin{equation*}
\mathcal{N}_{\text{s}} = \mathcal{N} + \mathcal{L}_{\sigma}
\end{equation*}
where the elements of \mathcal{L}_{σ} are derived from the following integrals
\begin{equation*}
k_{m}k_{m'} \left[\hat{\sigma} \hat{H} \left(k_{m}+k_{m'} \right) \right].
\end{equation*}
and σ_{m} is a diagonal matrix of $\left(\sigma_{m} \right)$. The deterministic matrix \mathcal{N}_{s} is a diagonal matrix of $\sigma_{0} H^{2} k_{m}^{2}/4$.$\$

3.4 Acoustic pressure in the cavity

The acoustic pressure and the plates are coupled by the Neumann conditions at $z=0,h$,
\begin{equation*}
\left. \frac{\partial p}{\partial z} \right|_{z=0} = \rho \omega^{2} w_{0} \left(x,y \right), \left. \frac{\partial p}{\partial z} \right|_{z=h} = \rho \omega^{2} w_{2} \left(x,y \right).
\end{equation*}
The above conditions give the relationship between $\mathbf{c} = \left(\mathbf{c}_{0}, \mathbf{c}_{2} \right)$ and $\mathbf{\Gamma}$ (vector of Γ_{mn}^{1} and Γ_{mn}^{2})
\begin{equation*}
\mathcal{Q}_{\text{a}} \mathbf{\Gamma} = \rho \omega^{2} \mathbf{c}
\end{equation*}
where the matrix \mathcal{Q} is derived from the integrals of the products of the basis functions,
\begin{equation*}
\int_{0}^{A} \int_{0}^{B} \phi_{m} \psi_{n} \left(x,y \right)
\end{equation*}

\[(1.4) \]
\[\alpha_{m'}(x) \beta_{n'}(y) ; \text{dxdy} . \]

The contribution from the air pressure must be added to the equations for the plates. Then we have,
\[\begin{align*}
\mathcal{M}_{p} \mathbf{c} &= \mathcal{Q}_{p} \mathbf{\Gamma} + \mathbf{F} \\
\end{align*} \]
where the excitation vector is given by
\[\begin{align*}
F_{0} \phi_{m}(x_{0}) \psi_{n}(y_{0}), \quad m,n=1,2,\ldots,N
\end{align*} \]
where \(\left[x_{0},y_{0} \right] \) is the location of the excitation.

Hence the vectors \(\mathbf{c}_{0} \) and \(\mathbf{c}_{2} \) can be computed from
\[\begin{align*}
\left[\begin{array}{*{20}c}
\mathcal{M}_{\text{p}} & -\mathcal{Q}_{\text{p}} \\
\rho \omega^{2} \mathcal{I} & -\mathcal{Q}_{\text{a}}
\end{array} \right]
\left(\begin{array}{c}
\mathbf{c} \\
\mathbf{\Gamma}
\end{array} \right) =\left(\begin{array}{c}
\mathbf{F} \\
0
\end{array} \right) . \quad \label{last_equation}
\end{align*} \]
where \(\mathcal{I} \) is and identity matrix.

in order to include the irregularities, we simply have to modify \(\mathcal{M}_{p} \) in equation \ref{last_equation} to
\[\begin{align*}
\mathcal{M}_{p} + \mathcal{L}_{\theta} + \mathcal{L}_{\epsilon} + \mathcal{L}_{\sigma}
\end{align*} \]

3.5 Additional components

Here briefly demonstrate how additional components can be incorporated into the model.
The structure depicted in figure \ref{floor2draw} has additional ceiling batten attached to the ceiling. These batten can be added to the model by following the same way how the joists were attached to the upper plate. Let \(\mathbf{c}_{3} \) denote the vector of the coefficients of the additional components, which are now expanded over \(\left[\psi_{n} \right] \). Therefore we
have an equivalent contact condition to equation \ref{contact}. Only this time the matrix
represents the following integrals.
\begin{equation*}
\sum_{m=1}^{N} c_{mn} \phi_{m}(x_{i}), i=1,2,...,S_{2}.
\end{equation*}
where $SS_{2}S$ is the number of battens and x_{i} is the location of the batten. The strain
energy of the battens,
\begin{equation*}
\pi_{3} = \frac{1}{2} \mathbf{c}^{\text{t}} \mathcal{M}_{3} \mathbf{c}_{3}
\end{equation*}
can now be added to the total energy formula as shown in section 3.2.

4 SUMMARY
We have shown how the irregularities in the components of the light-weight floor/ceiling
structures can be included in the theoretical model. The irregularities are represented by the
deviation from the expected values. The deviation is then incorporated into the solution formulae
as the PSD as shown in figure 2. The shape of the PSD intuitively illustrates how many off-
diagonal elements are needed to represent the irregularity in the system of equations
\ref{last_equation}. The most notable advantage of the method of solution is that the formulae
remain unchanged regardless of the complexity of the structure.

ACKNOWLEDGEMENTS
H. Chung acknowledges New Zealand Science and Technology Foundation post-doctoral
fellowship (Contract number: UOAX0505). Figure 1 is courtesy of G. Schmid of the Acoustics
Research Centre.

REFERENCES
devices in lightweight structures: A measurement method and statistical analysis," Journal
weight floor/ceiling structures," ACTA Acustica (submitted 2006)
[5] R.J.M. Craik and R.S. Smith, Sound transmission through lightweight parallel plate. part II: