AUTHOR’S PROOF CORRECTION FORM

Journal: J SPORTS MED PHYS FITNESS
Paper n.: 4906-JSM
Title: Relationship between pedal force asymmetry and performance in cycling
time trial

Authors: R.R.Bini and P.A.Hume
Type of work: Original

I have checked the proofs. All corrections to errors are listed in the form below:

<table>
<thead>
<tr>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors in the proofs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORS’ NAMES AND SURNAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors in the proofs</td>
</tr>
<tr>
<td>Missing author</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORS’ AFFILIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
</tr>
<tr>
<td>Change in author affiliation</td>
</tr>
<tr>
<td>Missing author affiliation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CORRESPONDING AUTHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors in the proofs</td>
</tr>
<tr>
<td>Change in corresponding author details</td>
</tr>
</tbody>
</table>
ABSTRACT

<table>
<thead>
<tr>
<th>Page</th>
<th>Column (left or right)</th>
<th>Line</th>
<th>Errors in the proofs</th>
<th>Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KEY WORDS

Errors in the proofs | Corrections

TEXT

<table>
<thead>
<tr>
<th>Page</th>
<th>Column (left or right)</th>
<th>Line</th>
<th>Errors in the proofs</th>
<th>Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Left</td>
<td>32</td>
<td>“repeated measures”</td>
<td>“cross sectional”</td>
</tr>
<tr>
<td>4</td>
<td>Left</td>
<td>10</td>
<td>“indexes”</td>
<td>“indices”</td>
</tr>
<tr>
<td>6</td>
<td>Left</td>
<td>9</td>
<td>“indexes”</td>
<td>“indices”</td>
</tr>
<tr>
<td>6</td>
<td>Left</td>
<td>40</td>
<td>“Quite the contrary”</td>
<td>“In contrary”</td>
</tr>
<tr>
<td>6</td>
<td>Left</td>
<td>45</td>
<td></td>
<td>Add reference “21” after “leg”.</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Reference no.</th>
<th>Errors in the proofs</th>
<th>Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOOTNOTES ON THE LAST PAGE

Errors in the proofs | Corrections

| | | |
Relationship between pedal force asymmetry and performance in cycling time trial

R. R. BINI

Aim. It remains unclear if cyclists with better performance have less asymmetry. Therefore, this study aimed at assessing the relationship between cycling time trial performance and bilateral asymmetries in pedal forces.

Methods. Ten cyclists/triathletes performed an incremental cycling test to exhaustion to measure maximal oxygen uptake and power output. In a second session, bilateral pedal forces were acquired during a 4-km cycling time trial on the stationary cycle ergometer. Resultant and effective forces were computed along with the index of effectiveness at 500 m sections of the time trial using instrumented pedals. Intra-limb variability and the asymmetry index were calculated for each force variable.

Results. Multivariate analysis assessed bilateral differences in pedal forces accounting for power output, pedalling cadence and oxygen uptake of each cyclist. Force variables did not change throughout the test (effective – P=0.98, resultant – P=0.90 and index of effectiveness – P=0.99) with larger force applied by the dominant limb (11-21%). The relationship between asymmetries and performances was strong for the effective force (r=-0.72) but weak for the resultant force (r = 0.01) and for the index of effectiveness (r=-0.29). Substantial asymmetries were observed for the effective force (36-54%), resultant force (11-21%) and for the index of effectiveness (21-32%) at greater range than intra-limb variability (effective force =8-22%, resultant force =5-10% and index of effectiveness =1-3%).

Conclusion. Larger asymmetries in effective force were related to better performances during the 4-km time trial with low intra-limb variability for force measures suggesting consistence in asymmetries for individual cyclists.

Key Words: Athletic performance - Kinetics - Exercise test.
bilateral asymmetry in uninjured cyclists would be 5-20%. However, lower (~3%) and greater (23-30%) levels of asymmetry have been observed. Others have also suggested that asymmetries would be varied among cyclists. However, only one study assessed asymmetries in cyclists during racing, with limitations on measuring only peak torque (not pedal forces). It is then important to explore asymmetries looking at pedal forces with focus on providing normative data for cyclists who intend to use upcoming commercial pedal force systems during training (e.g. Garmin-Vector® [Schaffhausen, Switzerland], Look-Polar® [Kempele, Finland] and others). Indeed, it would be critical to assure that upcoming pedal force systems enable users to compute their individual levels of asymmetry to provide data for training interventions.

Assuming that commercial pedal force systems will enable cyclists to continuously assess force related measures for each pedal, it is important to investigate if better performance could be closely linked to lower asymmetries in pedal forces. To provide evidence on that, this study aimed at assessing the relationship between cycling time trial performance and bilateral asymmetries in pedal forces.

Materials and methods

Participants

A quantitative repeated measures experimental design was used to collect data. Ten cyclists with competitive experience in cycling and triathlon were invited to participate in the study. Cyclists’ (mean and standard deviation was 32±10 years, 71±14 kg, 180±13 cm, 62±6.3 ml·kg⁻¹·min⁻¹ maximal oxygen uptake, 377±88 W peak power output, and 5.3±0.8 W·kg⁻¹ peak power per body mass) signed an informed consent form in agreement with the committee of ethics in research of the institution where this study was conducted. No cyclist/triathlete had an injury that would impact on test performance at the time of data collection.

Testing protocol and instruments

At their first session, body mass and height were measured from cyclists/triathletes according to ISAK protocols. Cyclists/triathletes completed the Waterloo inventory to allow the determination of lower limb dominance. Cyclists/triathletes’ bicycle saddle height and horizontal position were measured to set-up the stationary cycle ergometer (Velotron, Racermate, Inc, Seattle, WA, USA). They performed an incremental cycling exercise on the cycle ergometer with three minutes of warm-up at 100 W and pedaling cadence visually controlled at 90±2 rpm. Workload was then increased to 150 W and remained increasing in a step profile of 25 W/min until cyclists’ exhaustion. A script was configured in the Velotron CS2008 software (Velotron; Racermate, Inc, Seattle, WA, USA) for automatic control of the constant workload mode with cycle ergometer resistance constantly changing to balance for fluctuations in pedalling cadence. Gas exchanges were continuously sampled from a mixing chamber where samples were drawn into the oxygen and carbon dioxide analyzers for continuous measurement using a metabolic cart (TrueOne 2400, Parvo Medics, Salt Lake City, UT, USA). Analyzers for oxygen and carbon dioxide were calibrated according to manufacturer recommendations. Maximal aerobic workload and maximal oxygen uptake were defined as the highest workload measured during the test and as the highest oxygen uptake value computed over a 15 s average of the data, respectively. After 30 minutes of rest, cyclists were prepared in the cycle ergometer to familiarise with the 4-km time trial test. They were instructed to perform maximally with full control for gear ratio and pedalling cadence. The second session of testing was conducted where there was similar training load prior to the first testing session, in order to try to ensure that the pre-test conditions were similar in terms of physical rest and preparedness for the testing sessions. After two to seven days from the first testing session, cyclists/triathletes returned to the laboratory at the approximate same time of the day to perform the 4-km time trial test following the same procedures described for the familiarisation session.

Normal and anterior-posterior forces were measured using a pair of strain gauge instrumented pedals, with pedal-to-crank angle measured using angular potentiometers attached to the pedal spindle. The pedal force system enabled normal and anterior-posterior force measurements using strain gauges with cyclists/triathletes using cycling shoes with
Look® Delta cleats. Pedal force data passed through an amplifier (RM04, Applied Measurements, Oakleigh, Australia) and, along with potentiometers and reed switch signals, were recorded using an analogue to digital board (PCI-MIO-16XE-50, National Instruments, Austin, TX, USA) at 600 Hz per channel using a custom made script in Matlab (Mathworks Inc, Natick, MA, USA). Analogue data (force and pedal-to-crank angles) were acquired for 30 seconds at 500 metres intervals of the test (apart from the 3.8 km data acquisition to eliminate drops in force after the 4 km mark) while oxygen uptake was taken continuously during the 4-km time trial tests.

Data analysis

Pedal-to-crank angle measured by the potentiometers were converted into sine and cosine to compute tangential and radial forces on the cranks. Low pass zero lag Butterworth digital filter with cut of frequency of 10 Hz was applied to the sine and cosine data from potentiometers to attenuate signal noise from gap in potentiometer voltage readings.

A reed switch attached to the bicycle frame detected the position of the crank in relation to the pedal revolution and enabled to separate pedal force data into every crank revolution. Average resultant (total) force applied on the sagittal plane of the pedal surface was calculated from full crank cycle, whilst pedal force effectiveness was assessed by the index of effectiveness computed as the ratio between the angular impulse of the tangential force on the crank (effective force) and the linear impulse of the total force applied on the pedal. Average pedalling cadence was computed from timing of the reed switch sensor, whilst average power output of each crank cycle was determined from the product of crank torque (computed from right and left effective forces and crank-arm length) to the average crank angular velocity taken from average pedalling cadence. Forces variables and power output were averaged for each cyclist/triathlete across five revolutions of the crank for each 500 metres section of the 4-km time trial test. Intra-limb variability was computed as the average coefficient of variance for the groups of cyclists. All force processing were conducted using a custom made script in Matlab (Mathworks Inc, Natick, MA, USA).

Asymmetry index (AI%) was calculated as outlined by Robinson et al. for average total pedal force, effective force and index of effectiveness, defining positive asymmetry whenever the dominant limb presented larger force measures than the non-dominant limb. Oxygen uptake was averaged for each 500 m section of the 4-km time trial test in order to illustrate exercise intensity during the 4-km time trial tests.

Statistical analysis

Right and left pedal measures of resultant pedal force, index of effectiveness and effective force were converted into measures for dominant and non-dominant limbs, given results from the Waterloo inventory (i.e. more than 60% of preference for a given limb). Along with force variables, power output and pedalling cadence were log transformed in order to reduce the non-uniformity in data distribution. A multivariate ANOVA was performed in order to assess differences in force variables between each 500 metres section of the time trial and between dominant and non-dominant limbs, using SPSS for Windows 16.0 that included power output, pedalling cadence and oxygen uptake as covariates. Post hoc correction of Sidak was used for pairwise multiple comparisons. Correlations between asymmetry index of each force measure and performance time was computed via Pearson correlations in Matlab, assuming strong relationships for r=0.7-1.0, moderate when r=0.4-0.69 and weak relationship when r<0.1-0.39. Significant differences were assumed when P<0.05 and observed power >0.8, and substantial asymmetries were considered for bilateral differences greater than 10%.3, 4, 20

Results

Measures of power output, pedalling cadence, oxygen uptake, effective force, resultant force and index of effectiveness taken during the 4-km time trial are shown in Figure 1.

Effects from power output were found in effective force (P<0.01 and observed power =1.0) and index of effectiveness (P<0.01 and observed power =0.99). Cadence affected effective force (p<0.01 and observed power =0.99) and resultant force (P<0.01 and observed power =0.97). No effects from oxygen up-
This study assessed the relationship between bilateral asymmetries in pedal forces and performance of cyclists during a 4-km cycling time trial. Substantial asymmetries were observed for the effective force (36-54%), resultant force (11-21%) and for the index of effectiveness (21-32%), which are larger than another study assessing cyclists during a 40-km time trial (<1-17%). Along these lines, larger asymmetries in effective force were related to better per-

Discussion

The relationship between asymmetries and performances was strong for the effective force ($r=-0.72$, $P=0.03$) but weak for resultant force ($r=0.01$, $P=0.98$) and for the index of effectiveness ($r=-0.29$, $P=0.42$), which are illustrated in Figure 2.

![Figure 1.—Power output, pedalling cadence, oxygen uptake (VO_2), effective force (EF), resultant force (RF) and index of effectiveness (IE) taken at each 500 metres section of a 4-km time trial. N.=10.](image)
general cycling exercise at increasing power outputs did not report differences in lower limb muscle activation comparing both legs. Muscle activation during single leg cycling did not differ when cyclists dominant and non-dominant legs were compared, which suggests that lower limb neural drive may not differ between legs. Therefore, further research should shed light on why some cyclists present larger asymmetries than others.

Upcoming commercial pedal force systems enable cyclists to monitor bilateral pedal power, which have been raising the question of how much asymmetries during the 4-km time trial, in contrary to observations in the referred study.3 Assuming that during time trials, the central nervous system optimizes neural drive to muscles in order to postpone fatigue, asymmetries could be affected by particular changes in fatigue state for a given limb. Reductions in asymmetries in crank torque at higher exercise intensities have been hypothesized due to a potential increased bilateral neural input by inter-hemispheric cortical communication to facilitate the excitability of both legs.2 However, studies assessing muscle activation in cyclists during bilateral cycling exercise at increasing power outputs did not report differences in lower limb muscle activation comparing both legs.11 Muscle activation during single leg cycling did not differ when cyclists dominant and non-dominant legs were compared, which suggests that lower limb neural drive may not differ between legs. Therefore, further research should shed light on why some cyclists present larger asymmetries than others.

Upcoming commercial pedal force systems enable cyclists to monitor bilateral pedal power, which have been raising the question of how much asymmetries during the 4-km time trial, in contrary to observations in the referred study.3 Assuming that during time trials, the central nervous system optimizes neural drive to muscles in order to postpone fatigue, asymmetries could be affected by particular changes in fatigue state for a given limb. Reductions in asymmetries in crank torque at higher exercise intensities have been hypothesized due to a potential increased bilateral neural input by inter-hemispheric cortical communication to facilitate the excitability of both legs.2 However, studies assessing muscle activation in cyclists during bilateral cycling exercise at increasing power outputs did not report differences in lower limb muscle activation comparing both legs.11 Muscle activation during single leg cycling did not differ when cyclists dominant and non-dominant legs were compared, which suggests that lower limb neural drive may not differ between legs. Therefore, further research should shed light on why some cyclists present larger asymmetries than others.
Symmetry should uninjured cyclists present. Although ranges from 5-20% have been suggested, arbitrary threshold of 10% should be questioned, as cyclists present either higher (23-30%) or lower asymmetries (~3%). The present study assessed effective force, which is an analogue of crank torque and pedal power, to approximate the measurements taken in previous studies. Indeed, we showed that asymmetry indexes can be smaller for the resultant (total) force applied to the pedal compared to other force variables. This may be due to the coupling between kinetics and kinematics in measures of the effective force, which does not happen for the resultant force or for the peak crank torque (used in previous studies). Therefore, a range of normative asymmetries is still to be determined given the outcome measure and workload can largely affect asymmetries in cycling. However, it is clearly shown that injured cyclists could present asymmetries ranging at ~400%. Therefore, further research is needed to: 1) define an optimal measure for assessment of asymmetries; and 2) define a range of acceptable asymmetries in uninjured cyclists.

Individual responses in asymmetry for the varying measures were observed in this study. For example, in Figure 2, the athlete who gets the fourth best performance 4km (359 seconds) has asymmetry values of <70% for effective and resultant forces, and 4% for the index of effectiveness. On the contrary, the athlete with the eighth best time (393 seconds) has asymmetry of ~96% for effective and resultant forces, which are much closer to the asymmetry for the index of effectiveness. The reason for these observations could be that cyclists of similar performance 4km (359 seconds) has asymmetry values of <70% for effective and resultant forces, and 4% for the index of effectiveness. On the contrary, the athlete with the eighth best time (393 seconds) has asymmetry of ~96% for effective and resultant forces, which are much closer to the asymmetry for the index of effectiveness. The reason for these observations could be that cyclists of similar performance largely differ in terms of pedal force measures, which can be observed in Figure 1. This is in agreement to findings from Bini and Hume who found technical errors of measurement for the index of effectiveness ranging from 10-14% comparing measures taken at separate days. Quite the contrary, the resultant force had errors of measurement ranging between 5-11%. For both measures, the non-dominant limb always presented larger between-day variability, which could lend support to the hypothesis of larger variability to the non-dominant leg.

Lower asymmetries for resultant pedal force potentially highlighted that kinetics and kinematics could be coupled in increasing (or decreasing) asymmetry in cyclists. In this study, effective force and the index of effectiveness were affected by pedal kinematics. Earlier findings suggest that trained cyclists could reduce asymmetries in ankle joint towards greater workloads, therefore, adding a confounding effect in effective force and index of effectiveness. In the present study, cyclists may have had greater effect from kinematics in their bilateral asymmetries due to large asymmetry indices for the effective force and index of effectiveness compared to the resultant force. Exercise intensity (measured from oxygen uptake) ranged from 83±6% (at 500 metres) to 97±7% (at 4-km) in the present study. Assessment of these force measures is needed at various workloads in order to ascertain if exercise intensity could affect similarly resultant and effective pedal forces.

Variability in asymmetries were shown to affect measures taken in different days. Along with that, intra-limb variability has been recently suggested to play a role on bilateral asymmetries in running. With that in mind, the present study showed that intra-limb variability was smaller than the range of asymmetries, which enforces that consistence in movement pattern is high, and differences between limbs were large. Interestingly, for the effective force, intra-limb variability was large for the non-dominant compared to the dominant limb throughout the time trial (20-22% vs. 8-10%). This difference could be linked to greater consistence for kinematics of the dominant limb, although that have not been reflected in the index of effectiveness. Further research is needed to address if greater asymmetries in pedal force could be related to bilateral differences in joint kinematics. Along these lines, given changes in kinematics affects the force-length-velocity relationship of individual muscles, it would be valuable to assess bilateral joint motion throughout the crank cycle to ascertain on the muscles groups that could potentially be leading bilateral asymmetries. Variability in pedal forces measured in different days was shown to be trivial (5-11% for resultant force and 10-14% for index of effectiveness), suggesting that asymmetries could be sustained across many days if training program is not changed.

Conclusions

Asymmetries were observed for the effective force (36-54%), resultant force (11-21%) and for
the index of effectiveness (21-32%) with an inverse relationship between asymmetries in effective force and 4-km cycling time trial performance. Intra-limb variability in pedal forces were generally smaller than bilateral differences in pedal forces, suggesting that bilateral differences in pedal forces is greater than consistence in movement pattern of cyclists.

References

Acknowledgements.-Thanks are given to the cyclists and triathletes who participated in the study.

Funding.-The author acknowledges AUT University for supporting this research.

Conflicts of interest.—The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Received on November 12, 2013. Accepted for publication on February 3, 2014.